Faster Approximation for Maximum Independent Set on Unit Disk Graph
نویسندگان
چکیده
Maximum independent set from a given set D of unit disks intersecting a horizontal line can be solved in O(n) time and O(n) space. As a corollary, we design a factor 2 approximation algorithm for the maximum independent set problem on unit disk graph which takes both time and space of O(n). The best known factor 2 approximation algorithm for this problem runs in O(n logn) time and takes O(n) space [1, 2].
منابع مشابه
Approximation Algorithms for Maximum Independent Set Problems and Fractional Coloring Problems on Unit Disk Graphs
Unit disk graphs are the intersection graphs of equal sized circles in the plane. In this paper, we consider the maximum independent set problems on unit disk graphs. When the given unit disk graph is de ned on a slab whose width is k, we propose an algorithm for nding a maximum independent set in O(n 4 d 2k= p 3 e ) time where n denotes the number of vertices. We also propose a (1 1=r)-approxi...
متن کاملA Robust PTAS for Maximum Weight Independent Sets in Unit Disk Graphs
A unit disk graph is the intersection graph of unit disks in the euclidean plane. We present a polynomial-time approximation scheme for the maximum weight independent set problem in unit disk graphs. In contrast to previously known approximation schemes, our approach does not require a geometric representation (specifying the coordinates of the disk centers). The approximation algorithm present...
متن کاملA new PTAS for Maximum Independent Sets in Unit Disk Graphs
A unit disk graph is an intersection graph of unit disks in the euclidean plane. We present a polynomial-time approximation scheme for the maximum independent set problem in unit disk graphs. In contrast to previously known approximation schemes, our approach does not require a geometric representation (specifying the coordinates of the disk centers).
متن کاملMaximum Area Independent Sets in Disk Intersection Graphs
Maximum Independent Set (MIS) and its relative Maximum Weight Independent Set (MWIS) are well-known problems in combinatorial optimization; they are NP-hard even in the geometric setting of unit disk graphs. In this paper, we study the Maximum Area Independent Set (MAIS) problem, a natural restricted version of MWIS in disk intersection graphs where the weight equals the disk area. We obtain: (...
متن کاملApproximation algorithms for finding and partitioning unit-disk graphs into co-k-plexes
This article studies a degree-bounded generalization of independent sets called co-k-plexes. Constant factor approximation algorithms are developed for the maximum co-k-plex problem on unit-disk graphs. The related problem of minimum co-k-plex coloring that generalizes classical vertex coloring is also studied in the context of unit-disk graphs. We extend several classical approximation results...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Inf. Process. Lett.
دوره 127 شماره
صفحات -
تاریخ انتشار 2017